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Abstract

We study the mechanical and conformational properties of networks of helical polymers with a combination of Monte Carlo simulations

based on the Wang–Landau algorithm and the three-chain model. We find that the stress–strain behavior of these networks has novel features

not observed in typical networks made of synthetic polymers. In particular, we find that as these networks are stretched they first strengthen,

then soften and finally strengthen again. This non-monotonic behavior of the stress correlates with the one of the helical content and is

rationalized by the elongation-induced formation and melting of the helical structure of the polymer. We complement these results with a

study of other conformational properties of the polymer strands that clarify the molecular mechanisms behind the mechanical behavior of

these networks. Finally, we present a qualitative comparison of some of our results with the theoretical ones recently reported by Kutter and

Terentjev.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The macromolecular character of polymers together with

their ability to change their conformations upon the

application of an external mechanical force makes their

elastic behavior unique. Indeed, elasticity is one of the most

important properties of polymeric materials and has been

extensively studied since the ground-breaking experiments

on network thermo-elasticity by Gough and Joule [1–4].

Networks made of polymers, called elastomers, are known

for their large deformability with almost complete recover-

ability, behavior not observed in other materials like

thermoplastics, metals or ceramics. This unique kind of

elasticity is a consequence of three molecular characteristics

of elastomers: the macromolecular nature of polymer

molecules, their ability to alter their conformations and

the formation of a network structure via cross links [5].

The study of polymer networks has evolved through

three different and complementary channels: experimental,
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theoretical and computer simulation studies. Doubtlessly,

the most important of the three is the experimental one

which has been the primary method used to study

elastomers and has led our understanding of polymer

networks to its current level. Among the different

experimental methods available, mechanical testing of

elastomers under uniaxial extension and compression are,

perhaps, the most commonly used methods and have

provided a substantial amount of information about these

systems. However, they are not the only loading conditions

available. Indeed, biaxial extension, shear and torsion are

other possible loading conditions that lead to further and

deeper information about the material. Other characteriz-

ation techniques include swelling experiments, optical and

spectroscopic methods like infrared dichroism, fluorescence

polarization and polarized infrared spectroscopy,

microscopy like scanning tunneling and atomic force

microscopy, nuclear magnetic resonance, small-angle

neutron and Brillouin scattering, and other methods. A

very comprehensive review of these experimental tech-

niques as applied to elastomers was recently compiled by

Mark [6]. From a theoretical perspective, many theories

have been developed that attempt to connect the molecular

properties of the material like intermolecular effects and,
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crosslink density and functionality with the macroscopic

behavior like the stress–strain relationship. The first theories

were developed by Kuhn [7], Treolar [2,8], James and Guth

[9], Wall [10] and Flory [11]. Further extensions of these

theories, such as the constraint junction model originally

proposed by Ronca and Allegra [12], and the slip-link model

developed by Graessley [13], Ball et al. [14] and, Edwards

and Vilgis [15] accounted for intermolecular effects. A

review of these first models has been recently compiled by

Erman and Mark [16]. More recently, substantial progress

has been made by Vilgis [17], Heinrich [18], Rubinstein

[19], Terentjev [20] and Schweizer [21] among other

researchers. Finally, computer simulations have also been

employed to enhance our understanding of elastomers. The

most common method employed to simulate the behavior of

networks is a combination of a single-chain simulation and

theory [16]. Specifically, a model of a single polymer is

built and simulated using Monte Carlo algorithms. The

output of the simulation is the radial distribution function of

the end-to-end distance which is used as input for the

standard three-chain model of rubberlike elasticity [2,8].

This model provides the stress–strain behavior of the

network. This approach has been applied to many polymers

like polyethylene, poly(dimethylsiloxane) and poly(oxy-

methylene) among others [16]. Another, more recent,

approach has been the use of molecular dynamics (MD)

simulations to study the behavior of elastomers. In

particular, Grest and Kremer have done extensive studies

on networks using MD simulations [22].

The aforementioned list of theoretical, experimental and

computer simulation studies is by no means exhaustive.

However, it might lead the reader to believe that the field of

rubberlike elasticity is almost fully understood; conclusion

that is far from the truth. Indeed, there are many systems of

current scientific interest that are not understood at present;

for example networks having multimodal distributions of

network chain lengths, reversibly cross-linked materials and

elastomers crosslinked in solution, or new ways to

reinforcement like exfoliated clays and rubbery particles

for toughening ceramics [5]. Biologically inspired

(‘biomimetic’) elastomers and bioelastomers are not under-

stood either. In particular, there are very few studies on

protein bioelastomers like elastin and resilin when com-

pared to the abundance of studies on synthetic elastomers

[16,23,24]. However, the elasticity of single biopolymers

has attracted a lot of attention in recent years thanks to the

development of a series of experimental methods referred to

as single molecule force spectroscopy (SMFS). These

methods have provided a novel perspective on the structure

of macromolecules and the determinants of their mechanical

stability. Some of the macromolecules studied using SMFS

include biological molecules like RNA [25] and DNA [26],

polysaccharides like dextran [27] and xanthan [28], the

muscle protein titin [29], the extracellular matrix protein

tenascin [30] and others, as well as synthetic polymers like
polyethylene glycol [31], poly(vinyl alcohol) [32] and poly

L-glutamic acid [33].

The use of biomimetic or biological polymers to build

novel materials is already underway [34]. In the particular

case of networks these more complex polymers will clearly

add a new dimension to the physics of elastomers by

bringing elements characteristic of biological molecules to

rubberlike elasticity. For example, biopolymers like poly-

peptides and proteins are known to form secondary

structures like a-helices, b-sheets and b-barrels, and tertiary

structures. The presence of these new elements in the

chemical structure of the polymer strands together with the

three molecular characteristics of elastomers mentioned in

the first paragraph will clearly enrich the physics of these

systems. Indeed, upon the application of an external

mechanical force the response of the network will be

more complex than the one of a typical synthetic elastomer

due to the internal (secondary and tertiary) structure of the

polymers. For example, the application of a force will not

only reduce the entropy of the polymer strands but also,

might stabilize or destabilize the secondary and tertiary

structures which, in turn, will add to the response of the

network to the applied force. This will clearly affect

the stress–strain relationship of the network. In addition, the

thermo-elastic behavior will be enriched since an increase in

temperature will ‘melt or soften’ the secondary and tertiary

structures of the biopolymer thus, making the network softer.

Similarly, solvent is expected to have interesting effects on the

mechanical properties of the network.

The myriad of possibilities offered by the coupling of

biological structures with elastomeric materials motivated

us to study these systems from a modeling perspective.

However, biopolymers can be structurally very complex.

Therefore, in this first article we focus on biopolymers with

the simplest possible secondary structure, a-helices, and

explore the macroscopic consequences. Specifically, we

focus on biopolymers called homopolypeptides which

undergo the helix–coil transition with changes in tempera-

ture or solvent quality. This transition has been extensively

studied in the literature [35,36]. During the transition, the

polymer adopts an a-helical conformation at low tempera-

tures while, at high temperatures, the polymer is a random

coil. This suggests that at low temperatures the elastomer

should behave as a network of rigid rods while, at high

temperatures, it should behave as a typical network of

flexible chains. However, the behavior turns out to be more

complex. The transition from one behavior to the other one

occurs at temperatures close to the helix–coil transition

temperature. Kutter and Terenjtev have recently published

theoretical results for networks of helicogenic molecules

[37]. We will compare our computer simulation results to

their theoretical ones in this article.

We carry out our study with a combination of single-

chain simulations and the three-chain model. The single-

chain simulations provide the radial distribution function of

the end-to-end distance which we use as input for the
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standard three-chain model. The model for the single-chain

(homopolypeptide) simulation was recently developed by us

[36] and will be summarized in the next section. The Monte

Carlo algorithm employed to solve the model is the one

developed by Wang and Landau [38]. With these results and

the three-chain model we compute the stress–strain

relationship of the network and other conformational

properties of the polymer strands at different temperatures.

This article is organized as follows. In the next section,

we describe our simulation protocol. First, we provide a

comprehensive description of the model used to describe

helicogenic polymers. Afterward, we describe the simu-

lation methodology which is based on Monte Carlo

simulations using the Wang–Landau algorithm. We also

review the three-chain model briefly. In the next section we

present our results for the stress–strain curves at three

different temperatures and rationalize the effect of tempera-

ture and strain on different equilibrium properties. More-

over, for the purpose of making our study more balanced

and objective, we present a qualitative comparison of our

simulation results with the theoretical ones of Kutter and

Terentjev. Finally, we conclude the present article by

summarizing the most important findings of our work and

with the appropriate acknowledgements.
2. Simulation protocol and theoretical model
2.1. The model

We describe a helicogenic polymer with the freely

rotating chain model where each bead represents an amino

acid residue. The intramolecular interactions between pairs

of beads are modeled with a hardcore potential energy and

the tendency towards the helical conformation is modeled

using a criterion based on the concept of torsion of a curve

as described below.

Helicogenic polymers are known to undergo the helix–

coil transition upon a change in temperature or solvent

quality. One of the most important characteristics of this

transition is its cooperativity [35] which emerges from the

formation of a hydrogen bond between the pair of residues i

and iC4. This, in turn, constrains the spatial positions and

orientations of residues iC1, iC2 and iC3. To capture this

cooperative nature of the helix–coil transition we proposed a

criterion based on the concept of ‘torsion’ of a curve which

is a well defined mathematical quantity. Explicitly, this

concept is employed as a criterion to determine the

conformational state (helix or coil) of each bead. The

torsion of a curve parameterized by the vectorial field r(x),

which could be visualized as a continuous representation of

the polymer chain, is defined as follows

cðxÞZ
ðr0ðxÞ; r00ðxÞ; r000ðxÞÞ

j½r0ðxÞ; r00ðxÞ�j2
(1)
where x is the arc of length parameter that can take any

value in the interval [0,L], L being the total contour length of

the chain, r 0(x), r 00(x) and r 000(x) are the first, second and third

order derivatives of r(x), respectively. The square brackets

and parenthesis indicate vectorial and scalar triple product

(i.e. (A,B,C)ZA$(B!C)), respectively. This definition of

torsion is also valid for the discrete representation of the

polymer chain used in the simulation; the only difference is

that the derivatives of the field must be approximated using

finite differences. For example, the first order derivative of

the field on the i-th bead is

r0ðiÞz
rðiC1ÞKrðiK1Þ

2lK
(2)

where lK is the bond (Kuhn) length and r(i) is the position of

the i-th bead. Similar expressions are also available for the

other derivatives [39].

It is well known that a helical curve has a fixed torsion

[40]. If we try to superimpose the beads that represent the

polymer chain onto this imaginary helical curve, these beads

should also have a constant value of torsion. We call this

value the torsion of the perfect helix cHelix and was chosen

to be 0.87 which corresponds to two consecutive dihedral

angles of C908. Consequently, we defined the following

criterion: ‘a bead has a helical conformation if the value of

its torsion differs from the torsion of the perfect helix, cHelix,

by less than a certain cutoff value, cCutoff’. The cutoff cCutoff

was set to 0.001. This value ensures that there is only one

configuration of the chain that corresponds to the ‘helical

state’. If this criterion is satisfied, then the helical bead

carries a negative enthalpy, called C, which stabilizes the

helical conformation; otherwise, the bead is in the random

coil state which is the reference state of the system. The

enthalpic parameter C is related to the standard parameter s

of helix–coil transition theory [35] as follows

sZ expðKDA=kBTÞ where DAZCKTDS (3)

It provides the enthalpic contribution that arises from the

formation of a hydrogen bond and is assumed to be constant

in our model. Furthermore, DS is the decrease in the entropy

of the residue incorporated into a helical sequence due to the

formation of a new hydrogen bond. The origin of DS in our

model arises from the freely rotating chain (FRC) model and

the constraints in the dihedral angles. Both parameters C

and DS are negative in Eq. (3). We chose the value of C to be

K1300 K so that the helix–coil transition temperature is

close to 300 K.

2.2. Simulation methodology

We used the freely rotating chain model where the bond

length was set equal to 1.53 (in arbitrary units) and the bond

angle was 109.38. Both parameters were kept constant

during the simulation. The concept of torsion, as explained

in the previous subsection, was used to determine the

conformation of each bead for each configuration of the
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chain. The torsion of the perfect helix was chosen as 0.87

which corresponds to two consecutive dihedral angles of C
908 and the chosen cutoff value was 0.001. The values for

the bond length; bond angle and perfect torsion were chosen

arbitrarily for convenience and not with the purpose of

mimicking the properties of any known polymer in

particular.

The initial configuration of the polymer chain was

generated randomly. The first bead was placed at origin and

did not move during the simulation. The initial position of

the second bead was along X-axis and at a distance equal to

1.53 from the origin. The third bead was located on the X–Y

plane so that the bond angle was 109.38 and, moreover, the

second bond had a positive projection onto the Y-axis. The

positions of all other beads were computed using random

dihedral angles with respect to the previous three beads.

These angles were taken from a prescribed finite set of 64

possible values, fZ90C(mp/32) where f represents the

dihedral angle and m varies from 0 to 63. This was done for

the purpose of having a finite estimate for the density of

states as explained below.

Pivot moves were used to change the configuration of the

chain. In the pivot move, the i-th bead is selected randomly

and the rest of the polymer (beads iC1 to n) is rotated

around the bond between beads iK1 and i by a randomly

chosen angle.

The Monte Carlo algorithm chosen was the one

developed by Wang and Landau [38]. This algorithm

generates a random walk in energy space with a probability

proportional to the reciprocal of the density of states, g(E),

and leads to a flat energy histogram. This method has the

advantage of escaping local energy minima and exploring

the free energy landscape efficiently which, in turn, leads to

an accurate estimate of the density of states, g(E), for any

system of interest. Once the density of states is known, all

the statistical properties can be evaluated using standard

formulae from statistical mechanics.

For the purposes of this article, we employ the Wang–

Landau algorithm to explore energy (arising from the

number of beads in the helical conformation) space which is

required for the estimation of the density of states. The

energy can adopt discrete values ranging from 0 to (nK4)C

in steps of C where n is the number of beads. So, in our case,

the density of states is a function of only one variable: the

energy E due to the beads in the helical state.

We now review the Wang–Landau [38] algorithm. At the

beginning of the simulation, the density of states g(E),

which is unknown a priori, is initialized to one for all

possible values of the energy. The random walk is then

started by changing the configuration of the polymer. The

transition probability for switching the polymer configur-

ation from {Ei} to {Ef} is

ProbðEi/Ef ÞZmin 1;
gðEiÞ

gðEf Þ

� �
(4)
Each time a move is accepted, the density of states of the

new configuration is updated by multiplying the existing

value by a modification factor f, i.e. g(E)/g(E)f. However,

if the move is rejected, then the density of states of the old

configuration is updated. This modification allows the

random walk to explore energy space quickly and

efficiently. The starting value of f was taken to be e1(Z
2.71828). After a move is completed, the corresponding

histogram H(E) is updated along with the modification of

the density of states. Once the histogram is ‘flat’ within

some tolerance, the value of f is modified as follows

fnewZ
ffiffiffiffiffiffi
fold

p
. At this point, the histogram is reset to zero and

the above procedure is started again with the updated

modification factor. This procedure is repeated until the

value of f is very close to 1. We stopped our simulations

when fK1 became smaller than 10K7.

Using the density of states various quantities can be

calculated with formulas from statistical mechanics. For

example, the canonical partition function and Helmholtz

free energy are

ZðTÞZ
X
E

gðEÞeKbE (5)

FðTÞZKT ln
X
E

gðEÞeKbE

 !
(6)

where F(T) is in units of Boltzmann’s constant, kB, and bZ
TK1. Apart from these thermodynamic quantities, the

ensemble average of any other quantity of interest can

also be calculated using following equation

hAðTÞiZ

P
E AðEÞgðEÞe

KbEP
E gðEÞe

KbE
(7)

In our case, we are interested in the radial distribution

function, the helical content which is defined as the fraction

of the polymer in the helical conformation and, the average

length and number of helical strands. The computation of

these quantities was done as follows. The first step was to

compute the density of states using the Wang–Landau

sampling scheme described before. Once the density of

states was known, we generated 109 configurations of the

chain and stored the values of the average end-to-end

distance squared, helical content and other quantities for

each configuration. Since the end-to-end distance must be

between zero and the maximum end-to-end distance, we

divided this maximum distance in 190 bins. So that when

the data of each of the 109 configurations were read, we used

the end-to-end distance to locate the bin to which the

configuration belonged. Then, the value of the property of

interest in that particular bin was updated. For example, in

the particular case of the radial distribution function we

increased the value stored in the bin by the density of states

corresponding to that bin times the Boltzmann weight at the

temperature of interest. The final result was then
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normalized. Similar procedures were used for the other

conformational properties.
2.3. The three-chain model

The three-chain model assumes that interchain inter-

actions are independent of deformation and averages the

free energies of chains in three orthogonal orientations. The

model considers three effective chains with end-to-end

distances Ri(iZx,y,z) parallel to the coordinate axes that are

deformed in the affine limit at constant volume. The

macroscopic deformations of the network are defined as

elongations liZLi/Lio where Li and Lio indicate the

deformed and undeformed dimensions of the network in

the i-th direction, respectively. For uniaxial extension the

conservation of volume implies that lxZl; lyZlzZlK1=2.

Thus the total free energy of the network made of f chains

per unit volume is given by the equation

Dfnet Zf
f ðR0lÞ

3
C

2f ðR0l
K1=2Þ

3
K f ðR0Þ

� �
(8)

R0 is the average chain dimensions of the network chains in

the undeformed state and f(x) is the single-chain free energy

(in units of Boltzmann constant) given by f(x)ZK
T ln(W(x)) where W(x) is the probability distribution of

the end-to-end distance obtained from the Monte Carlo

simulation. The derivative of Dfnet with respect to l gives

the stress–strain relationship.
3. Results and discussion

Let us start by analyzing the radial distribution function

(rdf) obtained from our Monte Carlo simulation study of a

single chain. Fig. 1 shows the rdf as a function of the end-to-

end distance for a chain with 30 beads and for three different

temperatures: 250, 300 and 350 K. The helix–coil transition

temperature for a 30 bead chain is 311 K and is mainly

determined by the parameter C(ZK1300 K) of the model.

Therefore, the three temperatures chosen cover all the range
Fig. 1. Radial distribution function as a function of the end-to-end distance

for a chain with thirty beads at different temperatures. (:) 350 K, (&)

300 K and (C) 250 K.
of possible behaviors of the chain from the helical structure

at low temperatures to the random coil conformation at high

temperatures. Fig. 1 shows that as the temperature is

reduced, the peak in the rdf shifts towards larger values of

the end-to-end distance. This behavior is the expected one

since a decrease in temperature favors the formation of

helical sequences thus, making the chain stiffer. However, it

is interesting to observe the presence of two peaks in the rdf

at low temperatures. This result agrees qualitatively with

previous studies by Curro and Mark on poly(oxymethylene)

(POM) with low number of skeletal bonds (20 and 40) [41].

POM is known to adopt the helical conformation under

some conditions.

Fig. 2 shows the Helmholtz free energy obtained from

the single chain Monte Carlo simulation as a function of the

end-to-end distance for the three temperatures mentioned

before. The plot clearly shows that a decrease in

temperature shifts the minimum of the single chain free

energy towards larger values of the end-to-end distance.

This is a consequence of the behavior of the rdf shown in

Fig. 1. However, the most interesting feature of the single

chain free energy is the change in its behavior for large

values of the end-to-end distance. Observe that as the

temperature is reduced, the dependence of the single chain

free energy on the end-to-end distance becomes stronger,

i.e. the slope becomes steeper. This indicates a sharp change

in the elastic behavior of the polymer and has important

consequences in the free energy of the network and,

consequently, in the stress–strain behavior. The free energy

of the network as a function of the extension ratio, l, is

shown in Fig. 3 for the temperatures mentioned before. The

sharp change in the elastic behavior of the polymer for large

end-to-end distances appears as a sharp increase in the free

energy of the network as a function of l, e.g. at 300 K the

increase occurs for values of l slightly lower than 1.5. These

sharp changes in the free energy of the network point to a

substantial change in the elastic behavior of the polymer

strands as we discuss below.

Figs. 4 and 5 show the stress and helical content, i.e. the

fraction of the polymers adopting the a-helical
Fig. 2. Single chain free energy as a function of the end-to-end distance for

a chain with thirty beads at different temperatures. (:) 350 K, (&) 300 K

and (C) 250 K.



Fig. 3. Network free energy as a function of l. (:) 350 K, (&) 300 K and

(C) 250 K.

Fig. 5. Helical content as a function of l. (:) 350 K, (&) 300 K and (C)

250 K.

G.A. Carri et al. / Polymer 46 (2005) 3809–38173814
conformation, of the network as a function of the strain at

the three aforementioned temperatures for the cases of

uniaxial extension and compression. We start by analyzing

the case of simple extension (lO1). For all the cases studied

the stress increases with increasing strain, as expected.

However, the physical origins of this increase are more

complex than in the case of synthetic polymers. Indeed,

there are two kinds of forces resisting the deformation of the

network: the decrease in the entropy of the system which is

also present in synthetic elastomers and can be described

using classical theories of rubber elasticity, and the

formation of helical strands which is known to be facilitated

by the application of external mechanical forces [36]. Fig. 4

shows that for temperatures below the helix–coil transition

temperature, 250 and 300 K in our case, the stress first

increases indicating that the network gets stronger as we

stretch it, then decreases which points to a softening of the

network before finally increasing to very large values due to

the finite extensibility of the polymer strands. At tempera-

tures above the helix–coil transition temperature the soft-

ening of the network is not observed, i.e. the stress always

increases with increasing l. However a clear ‘shoulder’ is

observed before the final increase in the stress. Thus, this

clearly indicates that the origin of the decrease in the stress
Fig. 4. Nominal stress (s*) as a function of l. (:) 350 K, (dotted line)

300 K and (continuous line) 250 K.
for temperatures below the helix–coil transition temperature

is directly related to the presence of helical strands before

the network is stretched.

Fig. 5 shows the helical content as a function of the

strain. At 250 K the helical content is close to 0.9 indicating

that 90% of the polymer strands are in the a-helical

conformation. Observe that this value remains constant until

it starts to decrease for values of l close to 1.15. This implies

that extension ratios larger than 1.15 interfere with the

formation of helical strands, i.e. the elongation of the

network is too large for the formation of helical strands or,

in other words, the polymer strands are overstretched with

respect to the end-to-end distance of the helix. Therefore, an

increasing number of segments adopt the random coil

conformation to satisfy the constraint imposed by the

deformation. Consequently, the helical content decreases. It

is important to note that this behavior of the helical content

predicted by our simulation study was also predicted by the

theoretical calculations of Kutter and Terentjev (Fig. 10 in

Ref. [37]). But, they used the Gaussian distribution for the

description of flexible coils which did not allow us to carry

out a quantitative comparison between theory and simu-

lations. However, the results agree on a qualitative level. At

300 and 350 K the behavior of the helical content is slightly

different. Indeed, upon the extension of the network the

helical content first increases and then decreases in

qualitative agreement with the results of Kutter and

Terentjev (Fig. 9 in Ref. [37]). The initial increase in the

helical content indicates that the application of an external

mechanical force first stabilizes the helical conformation.

This can be achieved in two ways: first, the helical strands

could be longer, i.e. more beads per strand, and, second,

more helical strands could be formed. A further increase in

the extension ratio interferes with the formation of helices

and the helical content decreases. It is important to notice

that the curves for the helical content do not reach zero for

large values of l. This is a limitation imposed by the number

of bins (Z190) used to compute the rdf, Fig. 1. A larger

number of bins would solve this problem. However 109
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configurations would not be enough to get accurate values

for the free energy and, thus, the fluctuations in the strain–

stress relationship would be very large.

Using the results obtained for the helical content and the

stress we can now explain the physical origins of the stress–

strain behavior. For this purpose we combined the data for

stress and helical content at 300 K in one plot, Fig. 6.

Observe that for values of l slightly above 1 both the stress

and the helical content increase. This implies that more and/

or longer helical strands are formed as we stretch the

network. We discuss this point below. The formation of new

helical strands and/or the increase in the length of the helical

strands decrease the entropy of the system because it

removes many rotational degrees of freedom from the

polymers. Thus, the decrease in the entropy of the network

is faster than in the typical case of synthetic polymers (i.e.

without secondary structures) and, moreover, has two

contributions: first, the loss of entropy due to the elongation

of the random coil segments and, second, the loss of random

coil segments due to the stabilization of the helical

conformation by the external mechanical force.

Fig. 6 also shows that when the helical content is about to

reach the maximum, the stress increases abruptly. This

implies that for this particular value of the extension ratio

the polymer strands are almost completely aligned parallel

to the stretching force and all the random coil segments are

almost fully stretched. Consequently, the external force is

resisted by the helical strands. Since these strands are more

stable due to the molecular driving forces that stabilize the

helical conformation (e.g. hydrogen bonds), more force is

required to overcome this thermodynamic barrier and melt

the helices. Consequently, the stress increases. Upon further

increase in l the network overcomes the thermodynamic

barrier and, fewer and shorter helices remain. Consequently,

the number of segments in the random coil conformation

increases which, in turn, increases the entropy of the

network. Thus, the network softens and the stress decreases.
Fig. 6. Helical content and nominal stress (s*) as a function of l at 300 K.
Finally, for very large deformations the polymer strands are

fully stretched and the stress diverges to infinity.

The previous rationalization of the stress–strain behavior

at 300 K is also valid for 350 K. However, the behavior at

250 K is slightly different. Indeed, the helical content shown

in Fig. 5 remains approximately constant while the stress

increases. This implies that even for small values of l the

external force is resisted by the helical strands. This is to be

expected because 90% of the beads are in the helical

conformation.

In order to understand the behavior of the helical content

we plot the average length of a helical strand, n, and the

average number of helical strands, m, as a function of l in

Figs. 7 and 8. Observe that at 250 K both n and m are

approximately constant until they decrease sharply for

values of l larger than 1.15. Thus, the behavior of the helical

content follows the ones of n and m. These results indicate

that the mechanism leading to the decrease in the helical

content with increasing values of l involves helical strands

breaking into shorter ones and not unwinding from the ends

which is another mechanism found in the helix–coil

transition of short homopolypeptides. At 300 K the situation

is different. m decreases with increasing l which implies that

the deformation decreases the average number of helical

strands. However, Fig. 7 shows an increase in n. Eventually,

n overrides the decrease in m and the helical content

increases. These results suggest that the deformation of the

network tends to merge helical strands into longer and

thermodynamically more stable helical strands. Again, for

large deformations the helical strands do not unwind from

the ends but, break into shorter helical strands. Finally, the

situation changes again at 350 K. In this case both n and m

increase with increasing l. This leads to a substantial

increase in the helical content by a factor of 5, approxi-

mately (Fig. 5) and indicate that the deformation of the

network stabilizes helical strands of any length.

Let us now rationalize the results obtained for the case of

compression (l!1) briefly. In this case, the network is

compressed in one direction. Consequently, it is stretched in
Fig. 7. Average number of beads per helical strand as a function of l. (:)

350 K, (&) 300 K and (C) 250 K.



Fig. 8. Number of helical strands as a function of l. (:) 350 K, (&) 300 K

and (C) 250 K.
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the two orthogonal directions because the volume must be

conserved in the three-chain model. Thus, all the results

reported for the case of uniaxial extension like the increase

in the helical content and n with increasing l, etc. should

also appear in compression for decreasing values of l. This

is what all the plots show. The only difference is that the

stress is now negative indicating that the system is under

compression. However, all the other features observed for

the case of uniaxial extension are present and can be

rationalized using similar arguments to the ones employed

to understand the effect of uniaxial elongation.
4. Conclusions

In this article we have studied the effect of temperature

and strain on the mechanical and conformational properties

of an elastomer made of helicogenic polymers. For this

purpose we employed a combination of single-chain Monte

Carlo simulations based on the Wang–Landau sampling

scheme and the three-chain model of rubberlike elasticity.

The helicogenic polymer was modeled with a modified

freely rotating chain model recently developed by us.

At the level of a single chain we found that a decrease in

temperature increases the end-to-end distance. This beha-

vior was rationalized with the argument that a decrease in

temperature favors the formation of helical sequences thus,

making the chain stiffer. Moreover, it was observed that at

low temperature the radial distribution function displays

two peaks in agreement with previous fully atomistic studies

on poly(oxymethylene). We also found that the Helmholtz

free energy becomes a more sensitive function of the end-to-

end distance as the temperature is reduced. This changes the

elastic behavior of the polymer substantially in particular

for large elongations.

For the case of the elastomer we found that the stress–

strain relationship shows new features not present in the

case of typical elastomers. In particular, the stress first

increases indicating a strengthening of the network and then

decreases before the final increase to very large values due
to the finite extensibility of the polymer strands. The

decrease for intermediate values of the extension (softening

of the network) was proven to be a consequence of the

melting of the helical structure by overstretching with

respect to the end-to-end distance of the helix. The helical

content was also studied. For this quantity we found that,

except at very low temperatures where the helical content is

approximately constant, it increases with increasing defor-

mation. This clearly implies a stabilization of the helical

conformation by the applied force. However, for large

deformations of the network the helical content decreases to

accommodate the constraints imposed by the applied

deformation. Finally, we correlated the behaviors of the

helical content and stress, and found that the sharp increase,

followed by a decrease, in the stress was due to the melting

of the helical strands by the imposed deformation. Further

studies of the average number and length of the helical

strands shed more light on the mechanisms behind the

formation and melting of the helical strands.

Clearly, the results presented in this article will benefit

from further studies. At present we only have data for three

temperatures. A more detailed study that addresses a wider

temperature range with more values of the temperature

would be very useful since it will clarify further how the

transition from low to high temperatures occurs. Moreover,

it will allow us to study the thermo-elastic behavior

predicted by the model [42]. Another point of interest is

the effect of chain length. In this article we studied the case

of 30 beads only. Clearly, longer chains have to be studied.

In addition, the effect of solvent is also an important topic

for swelling experiments. The final step would be to avoid

the use of the three-chain model. This can be accomplished

in a similar manner to the studies of Grest and Kremer. We

have to create a model for the whole network and run the

Monte Carlo simulation. All these topics will be the subjects

of future studies.
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